THE STABILITY OF THE MOTION OF A LIQUID,
DUE TO THERMOCAPILLARY FORCES

B. N. Goncharenko and A. L. Urintsev UDC 532.516

A study is made of the stability of the plane-parallel flow of a viscous liquidinalayer witha
free boundary, under weightless conditions. The motion of the liquid is duetothe dependence
of the surface tension on the temperature. An exact solution for an unperturbed boundary is
obtained by the same method used in {1], but with a2 more general boundary condition for the
temperature. A study of the stability was carried outbythe method of small vibrations, taking
account of the perturbation of the free boundary. The article discusses the asymptotic behav-
ior of long waves at small Reynolds numbers, and the conditions for instability are found.

1. Statement of Problem. Under weightless conditions, we consider a layer of viscous incompressible
liquid, bounded on the one hand by a free surface, and on the other hand by a solid wall (Fig. 1). We postu-
late that a surface tension with the coefficient ¢, depending linearly on the temperature T, is acting at the
free boundary. Let a constant temperature gradient be given along the solid wall, At the free boundary we
assume that the heat flux through the surface is proportional to the difference in temperature between the
liquid medium and the external medium, whose temperature is determined in accordance with a linear law,
with the same gradient, A, as in the solid wall, We shall assume that, at the surface of the liquid, a given
pressure, whose dimensionless value, p;, is shown below, is acting from the side of the external medium.

As units of length, time, mass, and temperature, respectively, we take the quantities I, pv (—Ado/dT)1,
pl%, Al, where ] is the mean thickness of the layer of liquid, p is the density, and p is the coefficient of kine-
matic viscogity.

The equations of motion and the boundary conditions, in dimensionless variables, have the form

R{vi+(v,V)VI=Av—yp (1.1)

RP (T, +vyT)= AT, divv=0 (1.2)

Pan -+ P1== BW N (1 + N2h =1+ N) (L.3)
Pae=—0T[0s  (y=1+N) (1.4)
Ny+v.N.=v, (y=1-+N) (1.5)
Tjon+m({T —T)=0 (w=1+N (1.6)
T=7T, v=0 (@=0 (1.7)

where v is the velocity of the liquid; p is the pressure; n is the external normal to the liquid; s isthe tangent;
N=N(x,t) is the perturbation of the free boundary; p; =—1.5x+const; Tg=x+const is the temperature of the
external medium.

The problem contains four dimensionless parameters: R=Viy~! is the Reynolds number; W= pVis!
is the Weber number; P=yp/y is the Prandtl mumber (x is the coefficient of thermal diffusivity); m isthe heat-
transfer coefficient; and V=—Al(pv)’1do-/dT is the characteristic velocity.

It can be verified that the formulas
Vgo=U = =3y gy, vyo=0, po=p : (1.8)

1 m :

1 1
T0=x+RP(——ﬁy‘+ﬁy3-—@—myJ-!-00115*'
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yield a steady-state solution to the problem (1.1)-(1.7) for the unper-
9.5 turbed free boundary (N=0) under the conditions of open flow [1]. In
what follows, we shall investigate the stability of this solution.

03¢ Linearizing the system (1.1)-(1.7) in the neighborhood of the solu-
\ tion (1.8), eliminating the pressure, and introducing a flow function using
the relationships

09088} — — — {1 = _ L
2907 2.7 3.7 um | Ve = Uno Ty Uy ==V @.9)
Fig. 5 we arrive at the problem
) A% = R (AY, + uAp, — u"y,) (1.10)
AT = RP(T, +ul, + P, — To,%x) 1.11)
R (‘Pyt - 1/4'q)xll + Ile) - A"py - lexxy -+ sz:: - RW-IN:rxx =0 (y=1 (1'12)
‘pyu"_‘pxx“}'u”N‘*‘Tx =0 y=1) (1.13)
Nt+uNx+'lpx=0 y=1) (1a14-)
Ty 4+ ToyyN —TouV, +m(T +Te,N) =0  (y=1) (1.15)
Ir=09, P, = lpy':o (¥y=0) (1'16)
We then separate the time and the longitudinal coordinate x, setting
(%, T, N) = (9,8, a) e* =D .17

where ¢ =¢(y); =6@); a is a constant; ¢ is the wave number; c=cp+ic; is the complex frequency.

We draw a conclusion as to the stability as a function of the sign of the imaginary part of the quantity c:
if, for all eigenvalues cj <0, solution (1.8) is stable; if there is even a single eigenvalue for which c; >0, we
have instability; the case cj =0 corresponds to the limit of stability (neutral perturbations).

For normalization, we select the condition

a=1 (1.18)
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Taking account of (1.8), (1.17), and (1.18), problem (1.10)-(1.16), is transformed to the form

V" — 2" + alg = iaR |(u — ) (¢ — a%g) — u'e] (L.19)
8" — o0 = RP {io[(u — ¢) 0 — Ty @] + @'} (1.20)
0" + [iaR (¢ + Y — 322] @ — iaR@ + 202 — ia?RW =0 (y=1) (}_‘21)
¢’ J-olp +iaf—1.5=0 y=1) {@.22)
;. mRP 1 _ (1.23)
B=@=9 =0 (y=0) (1.24)
c=9 (1) — 025 (1.25)
2. Asymptotic Behavior of Long Waves. Setting ¢=0 in (1.19)- (1.25), we obtain
9" =0, 6= RPgq, (2.1)
(po’” — 0, q)o” = 1.5 (y = 1) (202)
' 2 1
B=9,=9'=0 (@=0 (2.4)
co = 9o (1) —0.25 (2.5)
from which we find
Po = 3,37, 0y = RPy (Y,y? + 5P 1 (2.6)
¢ = 0.5 (2.7)
where
- (mt 1
P, = 9.6m (2.8)

Assuming that, at small values of o, problem (2.1)-(2.5) is a generatrix for the system (1,19)-(1.25),
we seek the solution of the latter in the form

o= () gy, 0= D ()0, c= D (i®)'c .9)
k=0 k=0 k=0

At sufficiently small values of the wave numbers ¢, the sign of the imaginary part of ¢;, by virtue of
the equality

¢; = ac; + 0 (%)

is determined by the sign of the coefficient ¢;, which is calculated with solution of the problem

" = R[(w—1,) 9" — u'Pg] 2.10)
01" = RP[(u—1/5) 8" — Toy®o + 1’1 2.11)
Q. = R(py—%49), ¢ =—0 (y=1) (2.12)
0, +mb =1 y=1 (2.13)
0, =¢, =9, =0 (y=10) (2.14)
e = (1) 2.15)
Solving system (2.10)-(2.15), for c¢; we obtain the value
e, =YoR(1—P/P) (2.16)

Analysis of formula (2.16) shows that, at 0 =m=m4=6+4+3, we have long-wave instability for any
values of the P number. If m>m,, the result depends on the value of the Prandtl number: at P>P, we have
stability, while for P<P x We have instability. Figure 2 shows a curve of the dependence P =P, (m). We
note that at P<9.6 the solution of (1.8) is unstable for any values of the heat-transfer coefficient. m.

3. The Case of Small Reynolds Numbers R and Arbitrary Wave Numbers . Assuming smallness of
the Reynolds number, we have the solution of the problem (1.19)-(1.25) in the form of series (3.1):

¢ = 2 R" ke 0= 2 Riv,, c= 2 Rig, 3.1)

k=0 k=0 k=<0
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We substitute expansions (3.1) into Eqs. (1.19)-(1.25), and collect the terms with identical powers of
the small parameter R; with R° we find
Yo — 20Mpy” - atihy =0, T, —ary =10

V" — 3 22 =0 (1) P
Yo" -+ oty 4 oty — 1.5 =0 w=1) (3.4)
T +mr,—ia=0 =1 (3.5)
Yo=%'=To=0, (=0 (3.6)
go = ¥ (1) — 0.25 . 3.7)
Calculations give the following value for the coefficient gy
&, = b, (cha — a~*sha) -+ hyshe — 0.25 (3.8)
where
2
hy = 2(x + mti :)h(c‘::2 +eh?ay T u"’a:hc:zd i (a"‘:l*l:hz o) 8.9
= (&~ — tha)k, + (acha)™ (3.10)

Figure 3 gives a plot of the dependence of the main part g, of the phase velocity. ¢ on the wave num-
ber g for different values of the coefficient m. Curves 1, 2, and 3 correspond to m=0, 1, and 5-10%, With
an arbitrary value of m, in the interval from 0to 5- 108, the corresponding curves for g,=g,(a) are included
between curves 1 and 3. Short-wave perturbations are localized near the free surface, while their rate of
propagation, as calculations show, differs only slightly from 0.25, i.e., the value of the velocity of the main
flow vy =u at the boundary. The coefficient gy is determined with solution of the problem

o — 20Pp," 4 by = it [(U — Zo) (Po” — o) — U] @.11)
Ty — a?ry = P[ia(u — go) Ty -+ Uy'1 (3.12)

b — 3aty = i (o — (8o + Y)Y +a2 /W] w=1) (8.13)
P bty = — ot (y= 1) 8.14)

1 +mry=P [-miin_;—’;;)—— 4 —Z—] =1) 3.15)
Po=P ' =7,=0 (y=0) (3.16)

and is represented by the formula
g =ik, (1 — WJW) 3.17)
where W*=k1k2’1, ki =k (o) >0, ky=k, (o, m, P) are known real functions, whose explicit expressions are
not given here in view of their cumbersome nature.
We have .
Tme=k (1 —WWHR | o(R) {3.18)

Consequently, with small Reynolds numbers, the conclusion with regard to the stability depends on the
sign of the quantity ky 1—W W'i)

A numerical analysis was made for a Prandtl number equal to 7.3 (water). An investigation was made
of the dependence of the critical value of the Weber number W, on the wave number at different values of m.
Figure 4 gives curves 1, 2, 3, 4, 5, corresponding to values of the heat-transfer coefficient m=50, 100, 150,
200, 5-10%, and 5- 106,

At g =0, the value of W, reverts to zero; at o — a,, W, rises infinitely. At the point g,, the coeffi-
cient k, changes sign: ky>0 for o< a,, and k;<0 for o> o,. Figure 5 gives a curve of the dependence of
ox on log m,

The results of calculations (P=7.3) lead to the following conclusions: 1) perturbations with wave num-
bers o> o, are damped with time; 2) perturbations with wave numbers 0< ¢ < ¢, behave differently, depend-
ing on the Weber number W: at W < W, they are damped; at W> W, they increase.

We note in conclusion that the convergence of the series (2.9) and (3.1) can be demonstrated by reduc-
ing the problem to an integral Fredholm equation of the second order, and then applying the principle of com-
pressive reflections and the theorem of an implicit function {2].
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